大香蕉综合在线观看视频-日本在线观看免费福利-欧美激情一级欧美精品性-综合激情丁香久久狠狠

好房網(wǎng)

網(wǎng)站首頁 樓盤信息 > 正文

在直角坐標系$xOy$中把矩形$B=\left(( {\stackrel {\dfrac {1} {2}} {0}\stackrel {0} {1}} \right )$確定的壓縮變換$σ$與矩陣$A=\left ( {\stackrel {0} {1}\stackrel {-1} {0}} \right )$確定的旋轉(zhuǎn)變換${R}_{9{0}^{\circ }}$進行復合得到復合變換${R}_{9{0}^{\circ }}\cdot σ$.$\left ( {1} \right )$求復合變換${R}_

2022-08-15 09:48:45 樓盤信息 來源:
導讀 想必現(xiàn)在有很多小伙伴對于在直角坐標系$xOy$中,把矩形$B= left ( { stackrel { dfrac {1} {2}} {0} stackrel {0} {1}} right

想必現(xiàn)在有很多小伙伴對于在直角坐標系$xOy$中,把矩形$B=\left ( {\stackrel {\dfrac {1} {2}} {0}\stackrel {0} {1}} \right )$確定的壓縮變換$σ$與矩陣$A=\left ( {\stackrel {0} {1}\stackrel {-1} {0}} \right )$確定的旋轉(zhuǎn)變換${R}_{9{0}^{\circ }}$進行復合,得到復合變換${R}_{9{0}^{\circ }}\cdot σ$.$\left ( {1} \right )$求復合變換${R}_{9{0}^{\circ }}\cdot σ$的坐標變換公式;$\left ( {2} \right )$求圓$C:{x}^{2}+{y}^{2}=1$在復合變換${R}_{9{0}^{\circ }}\cdot σ$的作用下所得曲線${C}^{'}$的方程.","title_text":"在直角坐標系$xOy$中,把矩形$B=\left ( {\stackrel {\dfrac {1} {2}} {0}\stackrel {0} {1}} \right )$確定的壓縮變換$σ$與矩陣$A=\left ( {\stackrel {0} {1}\stackrel {-1} {0}} \right )$確定的旋轉(zhuǎn)變換${R}_{9{0}^{\circ }}$進行復合,得到復合變換${R}_{9{0}^{\circ }}\cdot σ$.$\left ( {1} \right )$求復合變換${R}_{9{0}^{\circ }}\cdot σ$的坐標變換公式;$\left ( {2} \right )$求圓$C:{x}^{2}+{y}^{2}=1$在復合變換${R}_{9{0}^{\circ }}\cdot σ$的作用下所得曲線${C}^{'}$的方程.方面的知識都比較想要了解,那么今天小好小編就為大家收集了一些關于在直角坐標系$xOy$中,把矩形$B=\left ( {\stackrel {\dfrac {1} {2}} {0}\stackrel {0} {1}} \right )$確定的壓縮變換$σ$與矩陣$A=\left ( {\stackrel {0} {1}\stackrel {-1} {0}} \right )$確定的旋轉(zhuǎn)變換${R}_{9{0}^{\circ }}$進行復合,得到復合變換${R}_{9{0}^{\circ }}\cdot σ$.$\left ( {1} \right )$求復合變換${R}_{9{0}^{\circ }}\cdot σ$的坐標變換公式;$\left ( {2} \right )$求圓$C:{x}^{2}+{y}^{2}=1$在復合變換${R}_{9{0}^{\circ }}\cdot σ$的作用下所得曲線${C}^{'}$的方程.","title_text":"在直角坐標系$xOy$中,把矩形$B=\left ( {\stackrel {\dfrac {1} {2}} {0}\stackrel {0} {1}} \right )$確定的壓縮變換$σ$與矩陣$A=\left ( {\stackrel {0} {1}\stackrel {-1} {0}} \right )$確定的旋轉(zhuǎn)變換${R}_{9{0}^{\circ }}$進行復合,得到復合變換${R}_{9{0}^{\circ }}\cdot σ$.$\left ( {1} \right )$求復合變換${R}_{9{0}^{\circ }}\cdot σ$的坐標變換公式;$\left ( {2} \right )$求圓$C:{x}^{2}+{y}^{2}=1$在復合變換${R}_{9{0}^{\circ }}\cdot σ$的作用下所得曲線${C}^{'}$的方程.方面的知識分享給大家,希望大家會喜歡哦。

1、$left ( {1} right )because A=left ( {stackrel {0} {1}stackrel {-1} {0}} right )$,$B=left ( {stackrel {dfrac {1} {2}} {0}stackrel {0} {1}} right )$.

2、$therefore $復合變換${R}_{9{0}^{circ }}cdot σ$對應的矩陣為$AB=left ( {stackrel {0} {1}stackrel {-1} {0}} right )left ( {stackrel {dfrac {1} {2}} {0}stackrel {0} {1}} right )=left ( {stackrel {0} {dfrac {1} {2}}stackrel {-1} {0}} right )$.

3、$therefore $復合變換${R}_{9{0}^{circ }}cdot σ$的坐標變換公式為$left { {{begin{array}{ll} {{x}^{'}=-y} {{y}^{'}=dfrac {1} {2}x} end{array}}} right .$.

4、綜上所述:答案為$left { {{begin{array}{ll} {{x}^{'}=-y} {{y}^{'}=dfrac {1} {2}x} end{array}}} right .$.

5、$left ( {2} right )$設圓$C$上任意一點$Pleft ( {x,y} right )$在變換${R}_{9{0}^{circ }}cdot σ$的作用下所得的點為${P}^{'}=left ( {{x}^{'},{y}^{'}} right )$,

6、由$left ( {1} right )$得$left { {{begin{array}{ll} {{x}^{'}=-y} {{y}^{'}=dfrac {1} {2}x} end{array}}} right .$,即$left { {{begin{array}{ll} {x=2{x}^{'}} {y=-{x}^{'}} end{array}}} right .left ( {ast } right )$.

7、將$left ( {ast } right )$代入圓$C:{x}^{2}+{y}^{2}=1$,得$left ( {{2y}^{'}} right )^{2}+left ( {{-x}^{'}} right )^{2}=1$,

8、$therefore $曲線${C}^{'}$的方程是${x}^{2}+4{y}^{2}=1$.

9、綜上所述:答案為${x}^{2}+4{y}^{2}=1$.

本文到此結束,希望對大家有所幫助。


版權說明: 本文由用戶上傳,如有侵權請聯(lián)系刪除!


標簽: